campus Menu




Data Availability and Quality, Generalization and Adaptation


Weak Adaptation Learning--Addressing Cross-domain Data Insufficiency with Weak Annotator

Data quantity and quality are crucial factors for data-driven learning methods. In some target problem domains, there are not many data samples available, which could significantly hinder the learning process. While data from similar domains may be leveraged to help through domain adaptation, obtaining high-quality labeled data for those source domains themselves could be difficult or costly. To address such challenges on data insufficiency for classification problem in a target domain, we propose a weak adaptation learning (WAL) approach that leverages unlabeled data from a similar source domain, a low-cost weak annotator that produces labels based on task-specific heuristics, labeling rules, or other methods (albeit with inaccuracy), and a small amount of labeled data in the target domain. Our approach first conducts a theoretical analysis on the error bound of the trained classifier with respect to the data quantity and the performance of the weak annotator, and then introduces a multi-stage weak adaptation learning method to learn an accurate classifier by lowering the error bound. Our experiments demonstrate the effectiveness of our approach in learning an accurate classifier with limited labeled data in the target domain and unlabeled data in the source domain.

poster
One for many: Transfer learning for building hvac control

The design of building heating, ventilation, and air conditioning (HVAC) system is critically important, as it accounts for around half of building energy consumption and directly affects occupant comfort, productivity, and health. Traditional HVAC control methods are typically based on creating explicit physical models for building thermal dynamics, which often require significant effort to develop and are difficult to achieve sufficient accuracy and efficiency for runtime building control and scalability for field implementations. Recently, deep reinforcement learning (DRL) has emerged as a promising data-driven method that provides good control performance without analyzing physical models at runtime. However, a major challenge to DRL (and many other data-driven learning methods) is the long training time it takes to reach the desired performance. In this work, we present a novel transfer learning based approach to overcome this challenge. Our approach can effectively transfer a DRL-based HVAC controller trained for the source building to a controller for the target building with minimal effort and improved performance, by decomposing the design of neural network controller into a transferable front-end network that captures building-agnostic behavior and a back-end network that can be efficiently trained for each specific building. We conducted experiments on a variety of transfer scenarios between buildings with different sizes, numbers of thermal zones, materials and layouts, air conditioner types, and ambient weather conditions. The experimental results demonstrated the effectiveness of our approach in significantly reducing the training time, energy cost, and temperature violations.

framework


Disturbance and Attacks


Learning-based Framework for Sensor Fault-Tolerant Building HVAC Control with Model-assisted Learning

As people spend up to 87% of their time indoors, intelligent Heating, Ventilation, and Air Conditioning (HVAC) systems in buildings are essential for maintaining occupant comfort and reducing energy consumption. These HVAC systems in smart buildings rely on real-time sensor readings, which in practice often suffer from various faults and could also be vulnerable to malicious attacks. Such faulty sensor inputs may lead to the violation of indoor environment requirements (e.g., temperature, humidity, etc.) and the increase of energy consumption. While many model-based approaches have been proposed in the literature for building HVAC control, it is costly to develop accurate physical models for ensuring their performance and even more challenging to address the impact of sensor faults. In this work, we present a novel learning-based framework for sensor fault-tolerant HVAC control, which includes three deep learning based components for 1) generating temperature proposals with the consideration of possible sensor faults, 2) selecting one of the proposals based on the assessment of their accuracy, and 3) applying reinforcement learning with the selected temperature proposal. Moreover, to address the challenge of training data insufficiency in building-related tasks, we propose a model-assisted learning method leveraging an abstract model of building physical dynamics. Through extensive experiments, we demonstrate that the proposed fault-tolerant HVAC control framework can significantly reduce building temperature violations under a variety of sensor fault patterns while maintaining energy efficiency.

system framework