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IDEAS Lab (DEsign Automation of Intelligent Systems)

Goal: Create automated, rigorous, and systematic methods, tools, and algorithms
for the design, validation, update, and adaptation of intelligent systems.
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Connected and Autonomous Vehicles (CAVs) and Challenges
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Uncertainties and Disturbances in CAVs
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Uncertainties and Disturbances in CAVs
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Addressing Uncertainty in Neural Networks
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e S&P: output range analysis -> guarantees against adversarial examples

* P&C: reachability analysis -> safety verification of neural-network controlled systems



Addressing Uncertainty in Perception Neural Networks
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e S&P: output range analysis -> guarantees against adversarial examples



Adversarial Attacks to Perception Neural Networks

Adversarial examples: An adversarial example is an instance with small, intentional
feature perturbations that cause a machine learning model to make a false prediction.

Adversarial examples for AlexNet [Szegedy et. al, 2013]. All images to the left are correctly classified. The middle column
shows the (magnified) errors added to the images. The produced images to the right all categorized (incorrectly) as ‘Ostrich’.

[C. Szegedy, et al. "Intriguing properties of neural networks”. arXiv preprint arXiv:1312.6199, 2013.]



Output Range Analysis of Neural Networks
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Definition: Given a neural network f, and a compact input set X, compute Y = f(X) or its
over-approximation (a tight superset that contains the compute (X)) [Dutta et. al, 2017].

[S. Dutta S, et al. “Output range analysis for deep neural networks”. arXiv preprint arXiv:1709.09130, 2017.]



Our Approach: Divide

For nonlinear operations in a neural network, i.e., activation functions,

S Interval

Interval | Obtain the interval relaxation for the input of each
relaxation | neuron by IBP and efficient SIP (e.g., ERAN).

l - Based on the left/right derivative, obtain the

LP relaxation u polytope (LP) relaxation for a given input interval

......... N obtained by interval relaxation.

MILP
relaxation

Partition the input interval, and obtain the multi-
polytope (MILP) relaxation based on the LP
relaxation formulation.
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An example of tanh activation function



Our Approach: Slide
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Our LayR Tool for Output Range Analysis: Divide and Slide
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* Divide: For each neuron, divide the input space to refine the over-approximation.
 Slide: Perform layer-wise refinement with a sliding-window based method.

[C. Huang, et al. “Divide and Slide: Layer-Wise Refinement for Output Range Analysis of Deep Neural Networks”. EMSOFT, 2020.]



Comparison with NNV

Compared with NNV [Hoang-Dung, et. al, 2020]

#! Input set NNV Layk
Range | Time(s) | Range | Time ) | o |gyR shows 10.55% (Network II, NNIST-3) to
MNIST-1 12.44 6 2.85 1068 .
0 -
1 VINISTO 573 5 5 955 94.69% (NetworI.< I, NNIST 4) improvement on
MNIST-3 30.36 7 22.10 976 output range estimation over NNV.
MNIST-4 12.64 7 241 1057
T 2 o) . .
MNIST-1 1050 1 2.24 1200 * LayR has a much slower runtime increase wrt.
MNIST-2 12.43 1 4.96 1656 . _
I —NsT3 T 2842 B 5544 574 the increase of neural network size, when
MNIST-4 14.13 11 0.75 2663 compared with NNV.
MNIST-1 7.74 3456 2.29 3078
o | MNIST-2 6.72 1782 3.07 3124
MNIST-3 6.26 5954 2.05 3113
MNIST-4 4.61 1404 238 3113

! On the remaining settings including MNIST IV-V and CIFAR VI-VII,
NNV exceeded a timeout limit of 24 hours while the longest running
time of our tool among these benchmarks was around 5 hours on the
same machine. Thus we do not have the range comparison for those
cases here.



Addressing Uncertainty in Neural Network Controlled Systems
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* P&C: reachability analysis -> safety verification of neural-network controlled systems



Neural Network Controlled Systems (NNCS)

* (Deep) reinforcement learning * (End-to-end) Imitation learning * Approximating MPC

Control Law Value Function

Bl Neural Network (Mean Value Error: +0.09)
Optimal Explicit MPC

[Duan, et al. 2017]

[Chen, et al. 2018]
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“Best” Al agent trained using Reinforcement
Learning (20% higher score than humans)

[Codevilla, et al. 2017]



Reachability Analysis of NNCS
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Reach-Avoid: Starting from any state in X, decide if the NNCS will reach a state in
Xr attime t = 0 while avoiding X.



Our ReachNN Tool for Reachability Analysis of NNCS

* Key idea: use Bernstein Polynomials to approximate the NN controller.
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[C. Huang, et al. “ReachNN: Reachability analysis of neural-network controlled systems”. EMSOFT, 2019.]



Comparison with Others
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Flowpipes for the selected examples: Red curves denote the trajectories of x; and x, of the system
simulated from sampled states within the initial set. Green rectangles: ReachNN [Huang, et. al, 2019],
gray rectangles: Verisig [Ilvanov, et. al, 2019], navy rectangles: Sherlock [Dutta, et. al, 2019].



ReachNN*: Parallel Computing for Error Estimation

| * Approximation error estimation is a key

: step in ReachNN and time-consuming.

I ReachNN* improves it with a partitioned
: approach and parallel execution on GPUs.
I
I
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[J. Fan, et al. “ReachNN*: A Tool for Reachability Analysis of Neural-Network Controlled Systems”. ATVA, 2020.]



Make a Neural Network more Verification Friendly
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; | Il ] * Evaluate the impact of Lipschitz constant
| | on three NNCS verification tools:
4 G | oot | U | ReachNN, Verisig, and Sherlock.
(a) ReachNN: L = 0.34, Time: 1063s (b) ReachNN: L = 100.0, Time: 6668s (c) ReachNN: L = 390.0, Time: 13 hours
b R I R e " 1« Large Lipschitz constant may make
N . . : verification harder: e.g., uncontrollable
i ol ] ol [ ] approximation error (Fig. f), excessively
: long computation time (Fig. c).
| WtmermmmRens o Ghmermmmmens o e  Retrain neural networks to reduce
wf T mo - -y Lipschitz constants while maintaining
B | | control performance.

(2) Sherlock: L = 8.3, Time: 6.0s (h) Sherlock: L = 50.0, Time: 6.0s (i) Sherlock: L = 93.6, Time: 6.0s



Knowledge Distillation: Dual-Objective Optimization

* Regression error J],45° Error between the original network and the

retrained network.
* Lipschitz constant error]lip: Difference between the current Lipschitz

constant and a target value.
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[J. Fan, et al. “Towards Verification-Aware Knowledge Distillation for Neural-Network Controlled Systems”. ICCAD, 2019.]



Effect of Knowledge Distillation for Smaller Lipschitz Constant
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(f) Verisig: L = 348.6, Time: 15s

<— Smaller Lipschitz constant:
more steps the tools can verify!

| The fluctuations reflects the
effect of our dual-objective
gradient descent approach
(eventually it converges).
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Recap: Uncertainty in Neural Networks

Reachability
Analysis

Output Range
Analysis

* LayR: Output range analysis (guarantees against adversarial examples).

* ReachNN*: Reachability analysis (safety verification of neural-network controlled systems).

[C. Huang, et al. “Divide and Slide: Layer-Wise Refinement for Output Range Analysis of Deep Neural Networks”. EMSOFT, 2020.]
[C. Huang, et al. “ReachNN: Reachability analysis of neural-network controlled systems”. EMISOFT, 2019.]



Uncertainties and Disturbances in Automotive CPS

SW-HW
Execution
Uncertainties




Execution Uncertainties in Cyber (SW-HW) Platform

End-to-end latency deadline

>:
el - * Uncertainties/disturbances on operations
 Cyber Domain Vi of computation, communication, storage.
i |
. \{arious ’pre§ of execut.ion uncertainties:
: i '—————B—————J i : timing violations, transient errors,
N T malicious attacks, etc.

* The effect of many execution
uncertainties is missing deadlines.




Conventional Paradigms for Setting Deadlines (Timing Constraints)

End-to-end latency deadline  Hard deadlines

|
>
1
L R E - Cannot be violated in any circumstance
! :' Cyber Domain \: E - Often require over-conservative worst-case
1 P . . . .
V[ - oy [E L analysis, and lead to infeasible designs or over-
! d | « . .
X B provisioning
| | : | - Increasingly hard (pun-intended) due to complex
! B ! function/architecture and uncertain environment
\ e | ,

___________________________

 Soft deadlines

- Can be violated anytime

- Cannot provide deterministic guarantees on
system properties




Weakly-hard Paradigm for Capturing and Reasoning Uncertainties

Many system (control, sensing, network) functions can tolerate certain degrees of
deadline misses.

(m,K) constraint: at most m deadline misses among any K consecutive activations [G.
Bernat, et al., 2001].

Weakly-hard

More flexible than hard real-time; more deterministic guarantees than soft real-time;
more general than both.

Design-time retrofitting: leveraging the allowed slack from weakly-hard constraints for
adding new functionality/features or fixing existing ones.

Run-time adaptation: property reasoning and guarantees in challenging environment
under timing/fault disturbances.



Key Questions for Weakly-hard Paradigm

Functional
Layer

Software
Layer

OS Layer

End-to-End Latency
N N
s —H v —K

Can functional/extra-functional properties hold
under deadline misses?

[ “Formal Verification of Weakly-hard Systems”, HSCC, 2019.]
[ “SAW: A Tool for Safety Analysis of Weakly-hard Systems”, CAV, 2020]

Is the system schedulable under weakly-hard
constraints?

A number of approaches in the literature

What OS support is needed?

[ “Job-Class-Level Fixed Priority Scheduling of Weakly-Hard Real-Time
Systems”, RTAS, 2019.]

How to set weakly-hard constraints for driving system design and adaptation?

[“Security-driven Codesign with Weakly-hard Constraints for Real-time Embedded Systems”, ICCD, 2019.]

[ “Opportunistic Intermittent Control with Safety Guarantees for Autonomous Systems”, DAC, 2020.]
[“Leveraging Weakly-hard Constraints for Improving System Fault Tolerance with Functional and Timing Guarantees”, ICCAD, 2020.]




Key Questions for Weakly-hard Paradigm

How to set weakly-hard constraints for driving system design and adaptation?

[“Security-driven Codesign with Weakly-hard Constraints for Real-time Embedded Systems”, ICCD, 2019.]




Security Challenges for Automotive Electronic Systems

G H0'p
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Various interfaces expose
security vulnerabilities.

Drastic increase of automotive
software further exacerbates
the problem.

70

[Figure Source: S. Checkoway, et al. "Comprehensive Experimental Analyses of
Automotive Attack Surfaces”. USENIX Security Symposium, 2011.]
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Security Challenges for Automotive Electronic Systems

* Lack of built-in security mechanisms in CAN
- Broadcast messages -> lack of privacy
- Priority-based scheduling -> DOS attack
- No message authentication -> masquerade or replay attack



Addressing Security Challenges

CAN

[ ) | )| ]

[ m + MAC bits]

Lightweight authentication

Defend against masquerade and reply attacks

Limited resources and timing violations make it infeasible in many cases
([Lin, et al., TODAES, 2015])

Even for next-generation Ethernet-based protocols, timing is still a issue.



Addressing Security Challenges
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* Lightweight authentication

* Intrusion detection (e.g., by monitoring message streams) — also hard
to deploy because of resource limitations and timing constraints




Leveraging Weakly-hard Constraints to Improve Vehicle Security

%10 Sampling period Ts = 0.1

Allowing deadline misses for certain
control tasks based on weakly-hard
constraints — safety verified!
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[H. Liang, et al. “Security-driven Codesign with Weakly-hard Constraints for Real-time Embedded Systems”. ICCD, 2019.]



Leveraging Weakly-hard Constraints to Improve Vehicle Security
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Uncertainties and Disturbances in Automotive CPS

V2X Comm.
Disturbances




Connected Vehicle Applications based on Vehicular Ad-Hoc Network

Red Light Violation Warning Eco-Approach and Departure at Advanced Traveler Information
H H Curve Speed Warning Signalized Intersections System
[ ]
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Autonomous Intersection Management

* Centralized: intersection manager
schedules vehicle requests; often

based on grid. Intersection

* Distributed: vehicles negotiate the anags! A
. Confirm
right-of-way among themselves | <<<( )))
before entering the intersection. é |

Requestl Confirm1

Assumption:
Perfect Communication?

=



Communication Challenges

* Packet delay and loss 2 o0 metatn

Routine - AC1 (Analysis)

[0 Routine - AC1 (Simulation) al

- DSRC MAC & PHY layer: IEEE 802.11p.

Mean Delay (ms)

- Susceptible to significant communication delay
and packet collision/loss in crowded traffic.

- MUCh worse underJamm|ng/ﬂood|ng attaCk Jo1 002 003 004 005 006 007 008 009 04

Density (vehicles/m)

[Y. Yao, et al., “Delay analysis and study of IEEE 802.11 p based DSRC
° Previo us | nte rsectio N man age ment tech N |q ues safety communication in a highway environment”. INFOCOM, 2013.]
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- Lack consideration of packet delay/loss. JBEREE @
- May lead to deadlocks or unsafe situations. s
- May have liveness issues. 0 es
8201 simulation
0 1 attacker 10 an;ickers 20 attackers

50 venhicles, Road length 300m, Transmission power 26dBm



Our Delay-Tolerant Protocol and Design Tools
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[B. Zheng, et al., “Design and Analysis of Delay-Tolerant Intelligent Intersection Management”. ACM TCPS, 2019.]




Verified Properties of Delay-Tolerant Protocol

* Guarantee safety even when delay exceeds the estimated bound (considering
packet loss/resend).

e Guarantee deadlock-free and liveness if delay is always within the bound.

» Better performance (short traveling time) when delay can be accurately bounded.



Performance Evaluation w/ SUMO-based Simulation
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Our intelligent intersection design significantly outperforms
smart traffic lights under all normal traffic patterns.
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Impact of Delay on Intersection Performance
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(a) Single intersection (b) Nine intersections

* Performance degrades with increasing communication delay.
» System-level analysis provides guidelines for lower-layer designs.




CONVINCE: Cross-Layer Design and Validation Framework for Next-
Generation Connected Vehicles

V2X and Self-
Driving
Applications

Application-level verification, validation

and certification
* Functional v/vwith timing consideration
* V2X for autonomous driving
* Vehicle network modeling

Autonomous
Vehicle
Software
Architecture

FlexRay bus

Antenna
for vehicular network

@@

Autonomous
Vehicle
Hardware
Architecture

Constraints on V2X timing,
safety, security;, ...

Software architecture modeling,

synthesis and validation
* Holist task generation and mapping from
functional model
* End-to-end timing analysis

Constraints on in-vehicle timing,
resource, dependability, ...

Hardware architecture modeling and
exploration
* Heterogeneous multicore architecture
modeling (CPU, GPU, FPGA, Accelerators, ...)
« Efficient architecture exploration




Summary: Addressing Uncertainties and Disturbances in CAVs

Perception Uncertainty P&C Uncertainty

- Output range analysis - Reachability analysis
(LayR) for addressing (ReachNN*) for NN
NN adversarial attacks safety verification

/VZX Comm. Disturbances \

Delay-tolerant V2X
application design
Functional verification
considering delay
Cross-layer framework

o

/SW-HW Execution Uncertainties \

Weakly-hard paradigm

Safety verification under
weakly-hard constraints (SAW)
Co-design for improving

security, fault tolerance, etc. /




Future Direction: Runtime Adaptation with Safety Assurance

* Different controllers may have different strengths and limitation — some have
better performance, some are more robust.

* Design an adaptor to switch among multiple controllers, including NN controllers
and model-based ones, to accommodate changing environment and missions.

* The key is to provide safety guarantees while doing so.

Controller(s)

Environmen
Adaptor onment

4 é
I I e
0‘|—\—’O | ¥ 'S
~ —_— ‘»,"'/ 1.',5
1 8 8

[Y. Wang, et al. “Energy-Efficient Control Adaptation with Safety Guarantees for Learning-Enabled Cyber-Physical
Systems ”. ICCAD, 2020.]
[ C. Huang, et al. “Opportunistic Intermittent Control with Safety Guarantees for Autonomous Systems”. DAC, 2020.]
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