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IDEAS Lab (DEsign Automation of Intelligent Systems)

Goal: Create automated, rigorous, and systematic methods, tools, and algorithms 
for the design, validation,  update, and adaptation of intelligent systems. 
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• Dynamic environment

• Functional complexity

- Scale and features

- Machine learning

• Architectural complexity

- Multicore CPUs, GPUs, …

- Federated -> Integrated

• Stringent requirements

- Safety critical and time critical
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• S&P: output range analysis -> guarantees against adversarial examples
• P&C: reachability analysis -> safety verification of neural-network controlled systems

Addressing Uncertainty in Neural Networks
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• S&P: output range analysis -> guarantees against adversarial examples
• P&C: reachability analysis -> safety verification of neural-network controlled systems

Addressing Uncertainty in Perception Neural Networks

Control Input: (



Adversarial examples for AlexNet [Szegedy et. al, 2013]. All images to the left are correctly classified. The middle column 
shows the (magnified) errors added to the images.  The produced images to the right all categorized (incorrectly) as ‘Ostrich’.

[C. Szegedy, et al. "Intriguing properties of neural networks”. arXiv preprint arXiv:1312.6199, 2013.]

Adversarial examples: An adversarial example is an instance with small, intentional 
feature perturbations that cause a machine learning model to make a false prediction.

Adversarial Attacks to Perception Neural Networks
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Definition: Given a neural network $, and a compact input set #, compute % = $ # or its 
over-approximation (a tight superset that contains the compute $ # ) [Dutta et. al, 2017].
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[S. Dutta S, et al. “Output range analysis for deep neural networks”. arXiv preprint arXiv:1709.09130, 2017.]
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Output Range Analysis of Neural Networks



Interval 
relaxation

MILP 
relaxation

LP relaxation

Obtain the interval relaxation for the input of each 
neuron by IBP and efficient SIP (e.g., ERAN).

For nonlinear operations in a neural network, i.e., activation functions,

An example of tanh activation function

Based on the left/right derivative, obtain the 
polytope (LP) relaxation for a given input interval 
obtained by interval relaxation.

Partition the input interval, and obtain the multi-
polytope (MILP) relaxation based on the LP 
relaxation formulation.

Our Approach: Divide
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• Divide: For each neuron, divide the input space to refine the over-approximation.
• Slide: Perform layer-wise refinement with a sliding-window based method.

Our LayR Tool for Output Range Analysis: Divide and Slide

[C. Huang, et al. “Divide and Slide: Layer-Wise Refinement for Output Range Analysis of Deep Neural Networks”. EMSOFT, 2020.]



Compared with NNV [Hoang-Dung, et. al, 2020]

• LayR shows 10.55% (Network II, NNIST-3) to 
94.69% (Network II, NNIST-4) improvement on 
output range estimation over NNV.

• LayR has a much slower runtime increase wrt. 
the increase of neural network size, when 
compared with NNV. 

Comparison with NNV



Planning and 
Control

ActuateSense

State: ! Input: "

Physical Plant
#!
#$ = ! − !' + "

Sensing and 
Perception

Raw data: 
)

• S&P: output range analysis -> guarantees against adversarial examples
• P&C: reachability analysis -> safety verification of neural-network controlled systems

Addressing Uncertainty in Neural Network Controlled Systems



• (Deep) reinforcement learning 

“Best” AI agent trained using Reinforcement 
Learning (20% higher score than humans)

[Duan, et al. 2017]

[Codevilla, et al. 2017]

Fig. 2: Top Left: Neural Network Regions; Top Right: Optimal Ex-
plicit MPC Regions; The general shape of the explicit MPC regions
can be seen in the neural network solution Bottom Left: Control
Law Comparison; Bottom Right: Value Function Comparison; Our
network is able to closely approximate the optimal control law.

VI. NUMERICAL EXAMPLES

The examples are intended as a proof of concept and
to check the quality of the approximation algorithm. We
did not make any effort to optimize the offline and online
computation speeds.

A. Double Integrator
Consider a 2-D double integrator system:

A =


I ✏I
0 I

�
, B =


✏2

2 I
✏I

�

where I = 1, x 2 R2,u 2 R, and ✏ = 0.1 is a time
discretization parameter. We are interested in stabilizing the
system by solving the MPC problem in (2) with cost terms
R = 1, M = I2, horizon N = 15, position constraints
|x(1)

k |  6, velocity constraints |x(2)
k |  1, k = 0, . . . , N

and input constraint |uk|  2, k = 1, . . . , N � 1.
Using prior knowledge that the optimal control law has

439 regions, we construct a neural network with 2 hidden
layers of width 8. Since the input size n0 = 2, according
to Eqn. (7), the lower bound on the maximal number of
polytope regions this neural network can compute is 576.

Fig. 2 compares the proposed policy gradient method to
the optimal explicit MPC solution in terms of the computed
control law, value function, and the polytopic regions that
define the piecewise affine control law structure. Even though
the network is small, with only 16 nodes, it is able to closely
approximate the optimal solution. The plot of the regions
defining the neural network control law is illustrated in
Fig. 2 and indicates that the neural network ignores saturated

Fig. 3: Neural Network: Our approach; Actor Critic Same control
law network architecture trained using actor critic algorithm. Our
method plateaus after 1000 iterations, while the actor critic method
plateaus after 3000 iterations. The resulting control law learned by
our method has better performance as measured by the difference in
value compared to the optimal value. The drops in this error around
training iterations 200 and 1000 in the neural network method is
due to the curriculum schedule.

regions at the top and bottom of the optimal regions plot.
These saturated regions correspond to regions which add
additional complexity to the control law, but have no effect
on the performance. The extra lines in the neural network
regions plot, such as the ones through the large center region,
could cause approximation error, but the effects are close
to negligible as shown by the close match between the
optimal and approximate control laws and corresponding
value functions. The regions of the neural network can be
visualized by sampling on a dense grid, and plotting where
changes in the gradient of the neural network with respect
to the inputs occur.

Since one of our contributions is in improving the policy
gradient algorithm by computing the finite horizon advantage
in (14), we quantify the impact of this change by comparing
our algorithm against an actor-critic algorithm based on
A3C [49]. The A3C algorithm approximates the advantage
function rather than computing it exactly based on the system
model. The same neural network architecture is used to
represent the control law in the actor-critic method, while
a second neural network is used to approximate the value
function. The value network has 3 hidden layers of width
64 and is trained via standard techniques of minimizing a
temporal difference error.

Fig. 3 compares the control values generated by each
method during training with the optimal value obtained from
the MPC controller. Our method learns significantly faster
and results in a better control law (mean value difference
of +0.09) in 1000 iterations, while the actor-critic method
converges to a control law with worse performance (+5.35)
after 3000 iterations. These results indicate that computing a
finite-horizon advantage based on the system model impacts
both the training efficiency and the quality of the resulting
neural network controller.

[Chen, et al. 2018]

Neural Network Controlled Systems (NNCS)

• (End-to-end) Imitation learning • Approximating MPC



Reach-Avoid: Starting from any state in !", decide if the NNCS will reach a state in 
!# at time $ ≥ 0 while avoiding !'.

Target 
Set 
!#

Avoid
!'Initial Set

!"

Reachability Analysis of NNCS



• Key idea: use Bernstein Polynomials to approximate the NN controller.

• Advantage: works for any Lipschitz continuous NN (ReLU, tanh, sigmoid, combination of them, etc.)

! "

Input-Output Mapping

x
<latexit sha1_base64="Gys8CLZO1lOb07ETaSOPtyT0epk=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgadndLEm8Bb14TMA8IFnC7GQ2GTP7YGZWDCFf4MWDIl79JG/+jbNJBBUtaCiquunu8hPOpLKsDyO3tr6xuZXfLuzs7u0fFA+P2jJOBaEtEvNYdH0sKWcRbSmmOO0mguLQ57TjT64yv3NHhWRxdKOmCfVCPIpYwAhWWmreD4oly7yoVRy3gizTsqq2Y2fEqbplF9layVCCFRqD4nt/GJM0pJEiHEvZs61EeTMsFCOczgv9VNIEkwke0Z6mEQ6p9GaLQ+foTCtDFMRCV6TQQv0+McOhlNPQ150hVmP528vEv7xeqoKaN2NRkioakeWiIOVIxSj7Gg2ZoETxqSaYCKZvRWSMBSZKZ1PQIXx9iv4nbce0y6bTdEv1y1UceTiBUzgHG6pQh2toQAsIUHiAJ3g2bo1H48V4XbbmjNXMMfyA8fYJR6WNQg==</latexit>

u
<latexit sha1_base64="m4s9fq3iTRJuWC3vjBEmW+RxQ8w=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hZkoJrkFvXhMwDwgWcLsZDYZM/tgZlYIS77AiwdFvPpJ3vwbZ5MIKlrQUFR1093lxVJog/GHs7K6tr6xmdvKb+/s7u0XDg7bOkoU4y0WyUh1Paq5FCFvGWEk78aK08CTvONNrjO/c8+VFlF4a6YxdwM6CoUvGDVWaiaDQhGXMMaEEJQRUrnEltRq1TKpIpJZFkVYojEovPeHEUsCHhomqdY9gmPjplQZwSSf5fuJ5jFlEzriPUtDGnDtpvNDZ+jUKkPkR8pWaNBc/T6R0kDraeDZzoCasf7tZeJfXi8xftVNRRgnhodsschPJDIRyr5GQ6E4M3JqCWVK2FsRG1NFmbHZ5G0IX5+i/0m7XCLnpXLzoli/WsaRg2M4gTMgUIE63EADWsCAwwM8wbNz5zw6L87ronXFWc4cwQ84b58wAI0z</latexit>

u = (x)
<latexit sha1_base64="FTao4Mo4mUQvQvaaGTgKMd6jXWc=">AAAB9HicbVBNSwMxEM36WetX1aOXYBHqpexWQS9CwYveKtgPaJcym2bb0Gw2JtliWfo7vHhQxKs/xpv/xrTdg7Y+GHi8N8PMvEBypo3rfjsrq2vrG5u5rfz2zu7efuHgsKHjRBFaJzGPVSsATTkTtG6Y4bQlFYUo4LQZDG+mfnNElWaxeDBjSf0I+oKFjICxkp/ga9wZgpRQejrrFopu2Z0BLxMvI0WUodYtfHV6MUkiKgzhoHXbc6XxU1CGEU4n+U6iqQQyhD5tWyogotpPZ0dP8KlVejiMlS1h8Ez9PZFCpPU4CmxnBGagF72p+J/XTkx45adMyMRQQeaLwoRjE+NpArjHFCWGjy0Bopi9FZMBKCDG5pS3IXiLLy+TRqXsnZcr9xfF6l0WRw4doxNUQh66RFV0i2qojgh6RM/oFb05I+fFeXc+5q0rTjZzhP7A+fwBTkqRKw==</latexit>

u
<latexit sha1_base64="GXpgFbV67kSGewKikC77UrAqxMY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF721YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2b+wxMqzWN5byYJ+hEdSh5yRo2Vmmm/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+Sdq3qXVRrzctK/S6PowgncArn4MEV1OEWGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/5RaNBA==</latexit>

x
<latexit sha1_base64="f3pmP6yQ7YDX0G3Ck/lyBJ2Ftzo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY8BL3pLwDwgWcLspDcZMzu7zMyKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YhK81jem3GCfkQHkoecUWOl+lOvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3kW5Ur8sVe+yOPJwAqdwDh5cQRVuoQYNYIDwDK/w5jw4L86787FozTnZzDH8gfP5A+mijQc=</latexit>

Bernstein Polynomial Approximation
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ReachNN: Reachability Analysis of Neural-Network Controlled Systems 111:7

polynomial based approach adopted in this paper, Taylor models su�er from two main limitations: (1)
The validity of Taylor models relies on the function di�erentiability, while ReLU neural networks are
not di�erentiable. Thus Taylor models cannot handle a large number of neural networks; (2) There is
no theoretical upper bound estimation for Taylor models, which further limits the rationality of using
Taylor models.

R����� 2. To avoid technicalities, we consider the neural-network controller with a single output
here. For n-output cases, an intuitive extension is to use Bernstein polynomials to approximate each
output respectively.

3.1 Bernstein Polynomials for Approximation
De�nition 3.2 (Bernstein Polynomials). Let d = (d1, · · · ,dm) 2 Nm and f be a function of

x = (x1. · · · ,xm) over I = [0, 1]m . The polynomials

Bf ,d (x) =
’

0kj dj
j 2{1, · · · ,m }

f (k1
d1
, · · · , km

dm
)

m÷
j=1

✓✓
dj

kj

◆
x
kj
j (1 � x j )dj�kj

◆

are called the Bernstein polynomials of f under the degree d .
We then construct P(x) overX by a series of linear transformation based on Bernstein polynomials.

Assume that X = [l1,u1] ⇥ · · · ⇥ [lm ,um]. Let x 0 = (x 0
1, · · · ,x 0

m), where
x
0
j = (x j � lj )/(uj � lj ), j = 1, · · · ,m

and

�
0(x 0) = �(x) = �

©≠≠
´
©≠≠
´

u1 � l1 · · · 0
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...
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™ÆÆ
¨
™ÆÆ
¨
. (2)

It is easy to see that � 0 is de�ned over I . For d = (d1, · · · ,dm) 2 Nm , let B�0,d (x 0) be the Bernstein
polynomials of � 0(x 0). We construct the polynomial approximation for � as:

P�,d (x) = B�0,d

©≠≠≠
´
©≠≠
´

1
u1�l1 · · · 0
...

. . .
...

0 · · · 1
um�lm

™ÆÆ
¨
x �

©≠≠≠
´

l1
u1�l1
...
lm

um�lm

™ÆÆÆ
¨

™ÆÆÆ
¨
. (3)

Whenwewant to compute a Bernstein polynomial over a non-interval domain I , we may consider
an interval enclosure of I , since we only need to ensure that the polynomial is valid on the domain
and it is su�cient to take its superset. Hence, in Algorithm 1, the Bernstein polynomial(s) inUi are
computed based on an interval enclosure of Xi .

3.2 Approximation Error Estimation
After we obtain the approximation of the neural network controller, a certain question is how to
estimate a valid bound for approximation error � such that Theorem 3.1 holds. Namely, from any
given initial state set X , the reachable set of the perturbed system €x = f (x , P�,d , �), � 2 [��̄, �̄] at
any time t 2 [0,�c ] is a superset of the one of the NNCS with ODE f (x ,�). A su�cient condition
can be derived based on the theory of di�erential inclusive [37]:
L���� 3.3. Given any state set X , let P�,d be the polynomial approximation of � with respect to

the degree d de�ned as Equation (3). For any time t 2 [0,�c ], the reachable set of the perturbed system
€x = f (x , P�,d + �), � 2 [��̄, �̄] is a superset of the one of the NNCS with ODE f (x ,�) from X , if

�(x) 2 { u | u = P�,d (x) + �, � 2 [��̄, �̄]}, 8x 2 X . (4)

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2019.

[C. Huang,  et al. “ReachNN: Reachability analysis of neural-network controlled systems”. EMSOFT, 2019.]

Our ReachNN Tool for Reachability Analysis of NNCS



Flowpipes for the selected examples: Red curves denote the trajectories of !" and !# of the system 
simulated from sampled states within the initial set. Green rectangles: ReachNN [Huang, et. al, 2019], 
gray rectangles: Verisig [Ivanov, et. al, 2019], navy rectangles: Sherlock [Dutta, et. al, 2019].

Comparison with Others 
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[J. Fan, et al. “ReachNN*: A Tool for Reachability Analysis of Neural-Network Controlled Systems”. ATVA, 2020.]

• Approximation error estimation is a key 
step in ReachNN and time-consuming. 
ReachNN* improves it with a partitioned 
approach and parallel execution on GPUs.

ReachNN*: Parallel Computing for Error Estimation



• Evaluate the impact of Lipschitz constant 
on three NNCS verification tools: 
ReachNN, Verisig, and Sherlock.

• Large Lipschitz constant may make 
verification harder: e.g., uncontrollable 
approximation error (Fig. f), excessively 
long computation time (Fig. c).

• Retrain neural networks to reduce 
Lipschitz constants while maintaining 
control performance.

Make a Neural Network more Verification Friendly



• Regression error !loss: Error between the original network and the 
retrained network.

• Lipschitz constant error !lip: Difference between the current Lipschitz 
constant and a target value.

[J. Fan, et al. “Towards Verification-Aware Knowledge Distillation for Neural-Network Controlled Systems”. ICCAD, 2019.]

Knowledge Distillation: Dual-Objective Optimization 



Smaller Lipschitz constant: 
more steps the tools can verify!

The fluctuations reflects the 
effect of our dual-objective 
gradient descent approach 
(eventually it converges).

Effect of Knowledge Distillation for Smaller Lipschitz Constant
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• LayR: Output range analysis (guarantees against adversarial examples). 
• ReachNN*: Reachability analysis (safety verification of neural-network controlled systems).

Recap: Uncertainty in Neural Networks

Output Range 
Analysis

Reachability 
Analysis

[C. Huang,  et al. “ReachNN: Reachability analysis of neural-network controlled systems”. EMSOFT, 2019.]

[C. Huang, et al. “Divide and Slide: Layer-Wise Refinement for Output Range Analysis of Deep Neural Networks”. EMSOFT, 2020.]
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•Uncertainties/disturbances on operations 
of computation, communication, storage. 

• Various types of execution uncertainties: 
timing violations, transient errors, 
malicious attacks, etc.

• The effect of many execution 
uncertainties is missing deadlines.  

Physical Domain 

Cyber Domain 

End-to-end latency deadline

m4

ECU2 ECU3

m5

m3
Task1

Task4

Task5 Task8

ECU1

Task3

Task6 m1

Task2

Bus

m2

Execution Uncertainties in Cyber (SW-HW) Platform



• Hard deadlines
- Cannot be violated in any circumstance
- Often require over-conservative worst-case 

analysis, and lead to infeasible designs or over-
provisioning 

- Increasingly hard (pun-intended) due to complex 
function/architecture and uncertain environment

• Soft deadlines
- Can be violated anytime
- Cannot provide deterministic guarantees on 

system properties  

Physical Domain 

Cyber Domain 

End-to-end latency deadline

m4

ECU2 ECU3

m5

m3
Task1

Task4

Task5 Task8

ECU1

Task3

Task6 m1

Task2

Bus

m2

Conventional Paradigms for Setting Deadlines (Timing Constraints)



• Many system (control, sensing, network) functions can tolerate certain degrees of 
deadline misses.

• (!,") constraint: at most ! deadline misses among any " consecutive activations [G. 
Bernat, et al., 2001]. 

• More flexible than hard real-time; more deterministic guarantees than soft real-time; 
more general than both.

• Design-time retrofitting: leveraging the allowed slack from weakly-hard constraints for 
adding new functionality/features or fixing existing ones.

• Run-time adaptation: property reasoning and guarantees in challenging environment 
under timing/fault disturbances.

Hard real-time

Weakly-hard

…
…

Weakly-hard Paradigm for Capturing and Reasoning Uncertainties



Functional 
Layer

Software 
Layer

OS Layer

Can functional/extra-functional properties hold 
under deadline misses?
[ “Formal Verification of Weakly-hard Systems”, HSCC, 2019.]
[ “SAW: A Tool for Safety Analysis of Weakly-hard Systems”, CAV, 2020]

Is the system schedulable under weakly-hard 
constraints?
A number of approaches in the literature

What OS support is needed?
[ “Job-Class-Level Fixed Priority Scheduling of Weakly-Hard Real-Time 
Systems”, RTAS, 2019.]

Key Questions for Weakly-hard Paradigm

How to set weakly-hard constraints for driving system design and adaptation?
[“Security-driven Codesign with Weakly-hard Constraints for Real-time Embedded Systems”, ICCD, 2019.]
[ “Opportunistic Intermittent Control with Safety Guarantees for Autonomous Systems”, DAC, 2020.]
[“Leveraging Weakly-hard Constraints for Improving System Fault Tolerance with Functional and Timing Guarantees”, ICCAD, 2020.]



Functional 
Layer

Software 
Layer

OS Layer

Can functional/extra-functional properties hold 
under deadline misses?
[ “Formal Verification of Weakly-hard Systems”, HSCC, 2019.]
[ “SAW: A Tool for Safety Analysis of Weakly-hard Systems”, CAV, 2020]

Is the system schedulable under weakly-hard 
constraints?
A number of approaches in the literature

What OS support is needed?
[ “Job-Class-Level Fixed Priority Scheduling of Weakly-Hard Real-Time 
Systems”, RTAS, 2019.]

Key Questions for Weakly-hard Paradigm

How to set weakly-hard constraints for driving system design and adaptation?
[“Security-driven Codesign with Weakly-hard Constraints for Real-time Embedded Systems”, ICCD, 2019.]
[ “Opportunistic Intermittent Control with Safety Guarantees for Autonomous Systems”, DAC, 2020.]
[“Leveraging Weakly-hard Constraints for Improving System Fault Tolerance with Functional and Timing Guarantees”, ICCAD, 2020.]



• Various interfaces expose 
security vulnerabilities.

• Drastic increase of automotive 
software further exacerbates 
the problem.

Security Challenges for Automotive Electronic Systems

[Figure Source: S. Checkoway, et al. "Comprehensive Experimental Analyses of 
Automotive Attack Surfaces”. USENIX Security Symposium, 2011.]



Attacker

CAN

!"

"

• Lack of built-in security mechanisms in CAN
- Broadcast messages -> lack of privacy
- Priority-based scheduling -> DOS attack
- No message authentication -> masquerade or replay attack

Security Challenges for Automotive Electronic Systems



Attacker

!"

CAN

• Lightweight authentication
- Defend against masquerade and reply attacks
- Limited resources and timing violations make it infeasible in many cases 

([Lin, et al., TODAES, 2015])
- Even for next-generation Ethernet-based protocols, timing is still a issue.

Addressing Security Challenges

" + MAC bits



MonitoringAttacker

!"

CAN

• Lightweight authentication
• Intrusion detection (e.g., by monitoring message streams) – also hard 

to deploy because of resource limitations and timing constraints

Addressing Security Challenges

" + MAC bits



ECU1

ECU2

ECU3

CAN bus

Plant

Other tasksControl tasksSecurity monitoring tasks

Sensor

Plant

SensorActuator Actuator
!"

!#

!$ !%

!&
ECU4

!'

!(

Attack

Adding security monitoring 
tasks with the slack obtained 
from control tasks

Allowing deadline misses for certain 
control tasks based on weakly-hard 
constraints – safety verified!

Leveraging Weakly-hard Constraints to Improve Vehicle Security

[H. Liang, et al. “Security-driven Codesign with Weakly-hard Constraints for Real-time Embedded Systems”. ICCD, 2019.]



Trade-off between security and control performance

No deadline miss

Control tasks 
become unstable

Leveraging Weakly-hard Constraints to Improve Vehicle Security



Input 
Uncertainty

Sensing 
Noise

Perception 
Uncertainty

SW-HW 
Execution 

Uncertainties

P&C 
Uncertainty

Actuation 
Noise

Planning 
and Control

Physical Plant

Sensing and 
Perception

Uncertainties and Disturbances in Automotive CPS 

V2X Comm. 
Disturbances



• Vehicles communicate 
with each other and 
infrastructure.

• Share information such 
as speed, location, 
acceleration, etc.

• Beyond single-vehicle 
autonomous driving.

• Many applications in 
safety, environment, 
mobility, etc.

(US DOT)

Connected Vehicle Applications based on Vehicular Ad-Hoc Network



• Centralized: intersection manager 
schedules vehicle requests; often 
based on grid.

• Distributed: vehicles negotiate the 
right-of-way among themselves 
before entering the intersection.

Intersection
Manager

Request1

Request2

Confirm1

Confirm2

Assumption:
Perfect Communication?

Autonomous Intersection Management



• Packet delay and loss
- DSRC MAC & PHY layer: IEEE 802.11p.

- Susceptible to significant communication delay 
and packet collision/loss in crowded traffic.

- Much worse under jamming/flooding attack.

• Previous intersection management techniques
- Lack consideration of packet delay/loss.
- May lead to deadlocks or unsafe situations.
- May have liveness issues.

50 vehicles, Road length 300m, Transmission power 26dBm

NS-3 
Simulation 

[Y. Yao, et al., “Delay analysis and study of IEEE 802.11 p based DSRC 
safety communication in a highway environment”. INFOCOM, 2013.]

Communication Challenges



Protocol Design 
and Modeling

Timed
Automata

Models

UPPAAL

Verification

Protocol
Simulator TraCI

API

Simulation

SUMO

Our Delay-Tolerant Protocol and Design Tools

[B. Zheng, et al., “Design and Analysis of Delay-Tolerant Intelligent Intersection Management”. ACM TCPS, 2019.]



• Guarantee safety even when delay exceeds the estimated bound (considering 
packet loss/resend).

• Guarantee deadlock-free and liveness if delay is always within the bound.

• Better performance (short traveling time) when delay can be accurately bounded.

Verified Properties of Delay-Tolerant Protocol



A B C

D E F

G H I

Performance Evaluation w/ SUMO-based Simulation

Our intelligent intersection design significantly outperforms 
smart traffic lights under all normal traffic patterns.



Impact of Delay on Intersection Performance

• Performance degrades with increasing communication delay. 
• System-level analysis provides guidelines for lower-layer designs.



V2X and Self-
Driving

Applications

Autonomous
Vehicle

Software
Architecture

Autonomous
Vehicle

Hardware 
Architecture

Application-level verification, validation 
and certification

• Functional v/vwith timing consideration
• V2X for autonomous driving
• Vehicle network modeling

Software architecture modeling, 
synthesis and validation

• Holist task generation and mapping from 
functional model
• End-to-end timing analysis

Hardware architecture modeling and 
exploration

• Heterogeneous multicore architecture 
modeling (CPU,  GPU, FPGA, Accelerators, …)
• Efficient architecture exploration

Constraints on V2X timing, 
safety, security, ... 

Constraints on in-vehicle timing, 
resource, dependability, …

Antenna
for vehicular network

CAN bus
Ethernet ECU

FlexRay bus

Sensor

Gateway

Router ECU
ECU ECU

ECU ECUOBD-II port

Sensor

Sensor

Sensor

Sensor

Sensor

Ethernet

GPU
FPGA

Switch

Switch

Switch

CONVINCE: Cross-Layer Design and Validation Framework for Next-
Generation Connected Vehicles



Input 
Uncertainty

Sensing 
Noise

Actuation 
Noise

Planning 
and Control

Physical Plant

Sensing and 
Perception

Summary: Addressing Uncertainties and Disturbances in CAVs

Perception Uncertainty
- Output range analysis 

(LayR) for addressing 
NN adversarial attacks

P&C Uncertainty
- Reachability analysis 

(ReachNN*) for NN 
safety verification

SW-HW Execution Uncertainties
- Weakly-hard paradigm
- Safety verification under 

weakly-hard constraints (SAW)
- Co-design for improving 

security, fault tolerance, etc.

V2X Comm. Disturbances
- Delay-tolerant V2X 

application design
- Functional verification 

considering delay
- Cross-layer framework



• Different controllers may have different strengths and limitation – some have 
better performance, some are more robust.
• Design an adaptor to switch among multiple controllers, including NN controllers 

and model-based ones, to accommodate changing environment and missions. 
• The key is to provide safety guarantees while doing so.

EnvironmentController(s)
Adaptor

Future Direction: Runtime Adaptation with Safety Assurance

[Y. Wang, et al. “Energy-Efficient Control Adaptation with Safety Guarantees for Learning-Enabled Cyber-Physical 
Systems ”. ICCAD, 2020.]
[ C. Huang, et al. “Opportunistic Intermittent Control with Safety Guarantees for Autonomous Systems”. DAC, 2020.]
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